Roll No.

320848(20)

B. E. (Eighth Semester) Examination, 2020

(New Scheme)

(Civil Engg. Branch)

OPEN CHANNEL FLOW

(Professional Elective)

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt any three parts of each question. Part (a) is compulsory.

Z. (a) A trunggling channel 1-tinUm apex angle of rell lass

- 1. (a) Identify the type of flow for the following:
 - (i) A flood wave while passing down a river section

protected by embankments, spills over the embankment at certain locations

- (ii) Sudden opening of sluice gate
- (b) At a section in a channel expansion the velocity over a quarter of the cross section is zero and is uniform over the remaining three-fourths of the area. Find average velocity, kinetic energy correction factor and momentum energy correction factor.
- (c) A trapezoidal channel is 5.0 m wide and has a side slope of 0.5 horizontal: 1 vertical. Find the depth of flow which can make the channel on efficient section. If $S_0 = 0.0002$ and n = 0.02, find the corresponding discharge.
- (d) Explain the term conveyance and second hydraulic exponent clearly and find out an approximate expression for second hydraulic exponent.

Unit-II

 (a) A triangular channel with an apex angle of 60° has a critical depth of 0.25 m. The discharge in the channel is m³/s.

2

7

7

(b)	Water flows in a $3.0\ m$ wide rectangular channel at
	a velocity of 2.5 m/s and a depth of 1.8 m. If at a
	section these is a smooth upward step of $0.30\ m.$
	What width is needed at that section to enable the
	critical flow to occur on the hump without any change
	in the upstream depth.

7

(c) The alternate depths for a certain flow in a rectangular channel are 0.7 m and 3.0 m respectively. Estimate the critical depth for the flow in a channel.

7

(d) Discuss the transition in canal due to width contraction for super critical flow.

redunic scool haller of Unit-III even mont submitted

(a) A rectangular channel has B = 20 m, n = 0.020 and $S_0 = 0.0004$. If the normal depth is 1.0 m, a depth of 0.8 m in a GVF in this channel is a part of GVF profile. det i Processethe following castrone lör join

(b) A 3.0 m wide rectangular channel has a longitudinal slope of 150 mm/km and Manning's n = 0.02. When the discharge in the channel is 0:85 m³/s estimate the slope of the water surface in the channel (relative to the horizontal) at a point where the depth of flow is 0.75 m.

	(c) Sketch the GVF profiles produced on the following	
	hreak in grade:	7
	(i) Mild to steep (ii) Steep to mild (iii) Mildes to mild	
	(d) Describe the method of direct integration of GVF differential equation for GVF computations.	7
4.	Unit-IV (a) Define strong jump in a rectangular channel.	2
	(b) In a 3·0 m wide horizontal, rectangular channel, a hydraulic jump takes place with initial Froude number	٠
	of 10.25. The sequent depth ratio of the jump is 14.0. Estimate (a) the relative energy loss (b) Froude number of flow exiting the jump.	7
	(c) Discuss the following sections for jump in horizontal non rectangular channel:	7
	(i) Basic equation (ii) Sequent depth ratio	
	(d) Describe the case of positive surge moving upstream.	7

[5]

Unit-V

5. (a) Define unsteady and steady spatially varied flow with example.

(b) Write short notes on : (any **four**)

 $4 \times 3 \frac{1}{2} = 14$

- (i) Differential equation of SVF with increasing discharge
- (ii) Classification of SVF with increasing discharge
- (iii) Profile computation of SVF with increasing discharge
- (iv) Side weir
- (v) Control point of SVF with increasing discharge